A note of deriving sea surface height equations

Ying-Chih Fang

University of Alaska Fairbanks, Fairbanks, Alaska, USA

Apr,18,2016

Start with

$$
\begin{equation*}
\int_{z}^{0} \frac{\partial \epsilon\left(z^{\prime}\right)}{\partial x} d z^{\prime} \tag{1}
\end{equation*}
$$

where ϵ is density anomaly. When doing vertically integration over the whole water column H, it becomes,

$$
\begin{equation*}
\int_{-H}^{0} \int_{z}^{0} \frac{\partial \epsilon\left(z^{\prime}\right)}{\partial x} d z^{\prime} d z \tag{2}
\end{equation*}
$$

where equation (1) can be regraded as a function of z, say $F(z)$, so equation (2) becomes

$$
\begin{equation*}
\int_{-H}^{0} F(z) d z \tag{3}
\end{equation*}
$$

Paper says this can be done by integration by parts, but be careful. Here is how to evaluated, instructed by Dima. By integration by parts, we will have

$$
\begin{equation*}
\int u d v=u v-\int v d u \tag{4}
\end{equation*}
$$

Therefore, equation (3) can be seen as

$$
\begin{align*}
u & =F(z) \tag{5}\\
d v & =d z \tag{6}\\
v & =z \tag{7}
\end{align*}
$$

So equation (3) can be done as

$$
\begin{align*}
\left.z F(z)\right|_{-H} ^{0}-\int_{-H}^{0} z \frac{\partial F(z)}{\partial z} d z & \\
& =0 F(0)-(-H) F(-H)-\int_{-H}^{0} z \frac{\partial F(z)}{\partial z} d z \\
& =H \int_{-H}^{0} \frac{\partial \epsilon\left(z^{\prime}\right)}{\partial x} d z^{\prime}-\int_{-H}^{0} z \frac{\partial F(z)}{\partial z} d z \tag{8}
\end{align*}
$$

The second term of equation (8) needs to deal with the derivative of $F(z)$. Recall that integral with variable limits

$$
\begin{equation*}
\frac{\partial}{\partial x} \int_{a}^{b} f(x, z) d z=f(b) \frac{\partial b}{\partial x}-f(a) \frac{\partial a}{\partial x}+\int_{a}^{b} \frac{\partial f(x, z)}{\partial x} d z \tag{9}
\end{equation*}
$$

We can proceed,

$$
\begin{align*}
\frac{\partial F(z)}{\partial z} & =\frac{\partial}{\partial z}\left(\int_{z}^{0} \frac{\partial \epsilon\left(z^{\prime}\right)}{\partial x} d z^{\prime}\right) \\
& =\frac{\partial \epsilon(0)}{\partial x} \frac{\partial 0}{\partial z}-\frac{\partial \epsilon(z)}{\partial x} \frac{\partial z}{\partial z}+\int_{z}^{0} \frac{\partial}{\partial z}\left(\frac{\partial \epsilon\left(z^{\prime}\right)}{\partial x}\right) d z^{\prime} \tag{10}
\end{align*}
$$

Note that there is no dependent variables for differentiation with respect to z for the third term of equation (10), so only the second term will be come out. Finally, equation (8) becomes

$$
\begin{align*}
H \int_{-H}^{0} \frac{\partial \epsilon\left(z^{\prime}\right)}{\partial x} d z^{\prime}-\int_{-H}^{0} z \frac{\partial F(z)}{\partial z} d z & =H \int_{-H}^{0} \frac{\partial \epsilon\left(z^{\prime}\right)}{\partial x} d z^{\prime}+\int_{-H}^{0} z \frac{\partial \epsilon(z)}{\partial x} d z \\
& =\int_{-H}^{0}(H+z) \frac{\partial \epsilon(z)}{\partial x} d z \tag{11}
\end{align*}
$$

This is the equation found in paper Liu and Wesiberg (2007) and Csanady (1979).

