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1 Prerequisite knowledge

1.1 Ertel potential vorticity

Before we start to understand what destruction of potential vorticity (PV) is,
we need to formulate the vorticity equation and know how it can be related
to the Ertel PV. First, the vector form of the equation of motions is

∂u

∂t
+ (2Ω + ω)× u = −1

ρ
5 p+5

{
Φ− |u|

2

2

}
+ ν 52 u (1)

where ω = 5 × u and both second terms on LHS and RHS come from
(u · 5)u = ω × u + 52u. This originates from the vector idensity that

5× u× u = ω× u = (u · 5)u−5
(

|u|2
2

)
. Here the bold symbol represents

vector so that u(u, v, w) is vecolity vector; Ω is the earth rotation and ω
defines as the vorticity. The remnant parts in (1) are p for pressure, ρ for
density, Φ for geopotential and ν for viscocity coefficient.

Taking curl of (1) we immediately form the equation for vortivity:

∂

∂t
5×u+5×{(2Ω + ω)× u} = −5×

(
1

ρ
5 p

)
+ν5×(52u)+5×5

{
Φ− |u|

2

2

}
(2)

If we define the absolute vorticity,

ωa = 2Ω + ω (3)

and use the following vector identities,

5×5(φ) = 0 if φ is a scalar (4)

52 (5× u) = 5×
(
52u

)
= 52ω (5)

−5×
(

1

ρ
5 p

)
= −

[
5
(

1

ρ

)
×5p+

1

ρ
5×5 p

]
= −

[
−5ρ
ρ2
×5p

]
=
5ρ×5p

ρ2
(6)

then (2) becomes

∂ω

∂t
+5× (ωa × u) =

5ρ×5p
ρ2

+ ν 52 ω (7)
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Note that the vector identity, 5× (A ×B) = A(5 ·B) −B(5 ·A) + (B ·
5)A− (A · 5)B, so that the second term on LHS of (7) can be shown as

5× (ωa × u) = ωa(5 · u)− u(5 · ωa) + (u · 5)ωa − (ωa · 5)u

= ωa
i

∂uj
∂xj

+ uj
∂ωa

i

∂xj
− ui

∂ωa
j

∂xj
− ωa

j

∂ui
∂xj

(8)

The second term on LHS of (8) is zero due to the divergence of a curl field
is 0. Then (7) can be written as

∂ω

∂t
+ (u · 5)ωa − (ωa · 5)u + ωa(5 · u) =

5ρ×5p
ρ2

+ ν 52 ω (9)

If we treat the earth rotation is time invariant or its temporal evolution can
be neglected in our formulation, we can come up with

dωa

dt
= (ωa · 5)u− ωa(5 · u) +

5ρ×5p
ρ2

+ ν 52 ω (10)

This is the so-called vorticity equation under the presence of baroclinicity
and friction. Before we proceed, let’s take a look on the first two terms on
RHS of (10),

(ωa · 5)u− ωa(5 · u) = ωa
∂

∂z

[
uî+ vĵ + wk̂

]
− ωak̂

[
∂u

∂x
+
∂v

∂y
+
∂w

∂z

]
= ωa

∂u

∂z
î+ ωa

∂v

∂z
ĵ − ωa

[
∂u

∂x
+
∂v

∂y

]
k̂ (11)

Here if we treat the rate of change of absolute vorticity (see (10)) is purely

attributed to −ωa

[
∂u
∂x

+ ∂v
∂y

]
k̂, the physical meaning of this term can be il-

lustrated by the following figure (Fig. 1).

Imaging that we have two areas S1 and S2, in which the boundaries of
S2 is formed by a velocity field extends toward positive x and y directions
with respect to S1 during a time interval 4t. We can write down,

S1 = 4x4y

S2 = 4x4y
(

1 +
∂u

∂x
4t
)(

1 +
∂v

∂y
4t
)

≈ 4x4y
(

1 +
∂u

∂x
4t+

∂v

∂y
4t
)

(12)
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Figure 1: A schematic of two areas S1 and S2. The area of S2 is formed by
a velocity field with respect to S1.

Therefore the rate of change of unit volume

lim
t→0

S2− S1

4t
=
∂u

∂x
+
∂v

∂y
(13)

From (13), we can say that

dA

dt
=

(
∂u

∂x
+
∂v

∂y

)
A

⇒ ∂u

∂x
+
∂v

∂y
=

1

A

dA

dt
(14)

where A is the cross-section area of an imaginary tube. Therefore, we can

express −ωa

[
∂u
∂x

+ ∂v
∂y

]
as −ωa

A
dA
dt

, then (10) becomes

dωa

dt
= −ωa

A

dA

dt
dωa

dt
+

ωa

A

dA

dt
= 0

⇒ d

dt
(ωaA) = 0 (15)

This result tells us that the physical meaning of −ωa

[
∂u
∂x

+ ∂v
∂y

]
k̂ is for vortex

stretching, in which the larger the cross-section area in the vortex tube the
smaller the resulting absolute vorticity and vice versa.
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Now if the rate of change of absolute vorticity is induced by ωa
∂u
∂z
î, we can

interpret this term via the following diagram (Fig. 2).

dωa

dt
= ωa

∂u

∂z

⇒ dωa

ωa

=
∂u

∂z
dt

⇒ 4ωa

ωa

=
4u
4z
4t =

4x
4z

= tan(γ) (16)

Figure 2: A schematic of tilting of vorticity axis under the presence of current
shear.

Therefore, under the presence of current shear, the axis of absolute vor-
ticity will be tilted by an angle γ. We conclude the vorticity equation in (10)
that the rate of change of absolute vorticity is from 1) tilting of the vortex
tube, 2) stretching of the vortex tube, 3) baroclinic production of vorticity
and 4) viscous diffusion of vorticity.

If the thermodynamic change can be neglected, then dρ
dt
≈ 0, the divergence

term can be ignored in (10). We can write (10) as

d

dt

(
ωa
j

ρ

)
=

ωa
j

ρ

∂ui
∂xj

+
1

ρ3
∂ρ

∂xj

∂p

∂xk
+
ν

ρ
52 ωi (17)

If we define
dλ

dt
= S (18)

where λ is an unknown property and S is its source(sink) term. Now we
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proceed

ωa ·
d

dt
5 λ = ωa

i

d

dt

∂λ

∂xi

= ωa
i

[
∂

∂t
+ uj

∂

∂j

]
∂λ

∂xi

= ωa
i

∂

∂xi

∂λ

∂t
+ ωa

i

∂

∂xi

[
uj
∂λ

∂xj

]
− ωa

i

∂uj
∂xi

∂λ

∂xj

= ωa
i

∂

∂xi

dλ

dt
− ωa

i

∂uj
∂xi

∂λ

∂xj

= ωa
i

∂S

∂xi
− ωa

i

∂uj
∂xi

∂λ

∂xj
(19)

We find that

ωa

ρ
· d
dt
5 λ =

ωa

ρ
· 5S −

[(
ωa

ρ
· 5
)

u

]
· 5λ (20)

Then if we do 5λ · d
dt

(
ωa

ρ

)
, it is

5λ · d
dt

(
ωa

ρ

)
=

(
ωa

ρ
· 5
)

u ·5λ+
1

ρ3
5λ · [5ρ×5p]+ ν

ρ
5λ ·52ω (21)

If we put (20) and (21) together,

ωa

ρ
· d
dt
5 λ+5λ · d

dt

(
ωa

ρ

)
=

d

dt

(
ωa

ρ
· 5λ

)
=

1

ρ3
5 λ · [5ρ×5p] +

ωa

ρ
· 5S +

ν

ρ
5 λ · 52ω

(22)

If λ is a conservative term, saying potential density, then dλ
dt

= 0 = S; and
inviscid (ν = 0); and barotropic (5ρ×5p = 0 ) or λ = λ(ρ, p), we will have

d

dt

(
ωa

ρ
· 5λ

)
= 0 (23)

showing that q = ωa

ρ
· 5λ is conserved. This quantity is defined as the Ertel

potential vorticity (PV). When we review Leif Thomas’s paper (T08, [6])
later, q is first quantify we will see and that is why we need to know this
term first. Next we are going to derive the flux form of Ertel PV equation
and review the impermeability theorem, which will be used throughout T08.
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1.2 The impermeability theorem

1.2.1 The flux form of Ertel PV equation

The notations in this section will follow Marshall et al’s 2001 JPO paper
(M01, [2]). First we introduce the flux form of Ertel PV equation.

∂

∂t
(ρQ) +5 · J = 0 (24)

where Q = −1

ρ
ωa · 5σ (25)

where σ is the potential density. Note that (25) is the Ertel PV we have
just showed in the last section. The term J is the flux of Q and is called the
J vector. There are three important properties in (24): 1) No matter what
thermodynamic variable is chosen, there is always a flux form of PV equa-
tion, 2) it must be 0 on RHS of (24) and 3) J vectors can not pass through
σ surfaces. σ surfaces are impermeable to Ertel PV.

If we proceed

∂

∂t
(ρQ) =

∂

∂t
(−ωa · 5σ)

= − ∂

∂t
5 ·(ωaσ)

= −5 ·j (26)

where j is defined as ∂
∂t

(ωaσ) and this is true that the conservation of ρQ
can be expressed by the divergence of vectors. The next question is what the
physical meaning of j vectors is.

Expanding j,

j =
∂

∂t
(ωaσ)

= ωa
∂σ

∂t
+ σ

∂ωa

∂t

= ωa
∂σ

∂t
+ σ

∂

∂t
(2Ω +5× u)

= ωa
∂σ

∂t
+ [5× (σu)]− ∂

∂t
(5σ × u)− O× u

∂σ

∂t

= ωa
∂σ

∂t
+
∂u

∂t
×5σ +5×

(
σ
∂u

∂t

)
(27)
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It is found that the third term on RHS of (27) does not provide contribution
for PV flux, this term is non-divergent. The problem is to determine a non-
divergent gauge X such that the flux J,

Now the equation of motions (where it is very similar to (1) but here we
use M01’s notations)

∂u

∂t
= −ωa × u−5

(
|u|2

2
+

p

ρ0

)
− ρ

′

ρ
5 Φ + F (28)

where F is the frictional force. Then we use

ρ
′

ρ
5 Φ = 5

(
ρ

′

ρ
Φ

)
− Φ

ρ0
5 ρ

′
(29)

it shows that (28) becomes

∂u

∂t
= −ωa × u−5

(
|u|2

2
+

p

ρ0
+
ρ

′

ρ
Φ

)
+
ρ

′

ρ
5 ρ

′
+ F (30)

Here we define M = p
ρ0

+ ρ
′

ρ
Φ as Montgomery potential and π = M + |u|2

2
as

Bernoulli function, then take a cross product of (30) with 5σ we have

∂u

∂t
×5σ = − (ωa × u)×5σ −5π ×5σ +

Φ

ρ0
5 ρ

′ ×5σ + F×5σ

⇒
(
∂u

∂t
+5π

)
×5σ = ωa (5σ · u)− u (5σ · ωa) +

Φ

ρ0
5 ρ

′ ×5σ + F×5σ

(31)

where we apply the identity that − (ωa × u) × 5σ = 5σ × (ωa × u) =
ωa (5σ · u)− u (5σ · ωa).

Notice that −ρu
(

1
ρ
5 σ · ωa

)
= ρ

(
−1
ρ
ωa · 5σ

)
u = ρQu. If adding ωa

∂σ
∂t

on both sides of (31) and compare with (27) we will have

ωa
∂σ

∂t
+

(
∂u

∂t
+5π

)
×5σ = ρQu + ωa

dσ

dt
+ F×5σ +

Φ

ρ0
5 ρ

′ ×5σ

= J (32)

Here the non-divergent gauge X = 5π×5σ and the J vector are determined.
For terms on LHS in (32) are further emphasized in M01. For terms on RHS
in (32) are used in Marshall and Nurser’s 1992 JPO paper (M92, [3]). We are
going to use the terms on RHS in (32) to reveal the impermeability theorem.
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1.2.2 The impermeability theorem

Following M92’s notations, and define B = −g dσ
dt

and ρ
′
= ρ

′
(ρ

′
, σ) then (24)

becomes
∂

∂t
(ρQ) +5 ·

(
ρQu− 1

g
Bωa + F×5σ

)
= 0 (33)

Manipulating a bit we can get

∂

∂t
(ρQ) + ρQ5 ·u + u · 5ρQ− 1

g
B 5 ·ωa −

1

g
ωa5 ·B

+5 ρ · (5× F)− F · 5 ×5σ = 0

⇒ ∂

∂t
(ρQ) + u · 5ρQ =

1

g
ωa · 5B −5× F · 5ρ

⇒ dQ

dt
= −1

ρ
5 ·NQ (34)

where NQ = −1

g
Bωa + F×5σ

This is obvious that why NQ is called the non-advective term and we will
see it again in T08. The important aspect of (34) is that the rate of change
of PV can be expressed by the divergence of non-advective terms. We can
conclude that the change of PV comes from 1) gradients of buoyancy forcing
in the direction of ωa and 2) curl of frictional forces that lie on surfaces of
constant σ (isopycnals).

Under a background current U, if there is a controlling volume V which
contains two isopycnal surfaces (θ1 and θ2) and a bounding surface ∂Vs lies
between them (Fig. 3), and we define that the rate of change of θ within
this domain is 0. Then we have

∂θ

∂t
+ U · 5θ =

∂θ

∂t
+ u · 5θ + U · 5θ − u · 5θ = 0

⇒ dθ

dt
+ (U− u) · 5θ = 0 (35)

Integrating (33) for all V ,

d

dt

∫∫∫
V

ρQdV +

∫∫∫
V

5 ·
(

(u−U) ρQ−−1

g
Bωa + F×5θ

)
dV = 0

⇒ d

dt

∫∫∫
V

ρQdV +

∫∫
S

(
(u−U) ρQ− 1

g
Bωa + F×5θ

)
· ndS = 0

(36)
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Figure 3: A schematic of controlling volume bound by two isopycnal surfaces
θ1 and θ2 (Adapted from Haynes and McIntyre, 1987, [1]).

where the divergence theorem is used. Geometrically, n and 5θ are on the
same plane, so that F×5θ · n = 0. And from (35) we can get(

(u−U) ρQ− 1

g
Bωa

)
· n =

(
(u−U)ωa · 5θ −

1

g
Bωa

)
· n

= −ωa

(
(U− u) · 5θ +

1

g
B

)
· n

= 0 (37)

This indicates that PV can propagate in a velocity normal to the isopycnal
surfaces but makes no contribution to the flux of PV. Summarizing, the
impermeability theorem states that there is no flux of PV across isopycnal
surfaces.

2 Review of the paper

2.1 General concept

In the beginning of the content, the author introduced the phenomenon called
intrathermocline eddies (ITE) or submesoscale coherent vortices with weak
stratification in the central core and a bulge-shaped isopycnal surfaces (Fig.
4). This configuration makes it contain anticyclonic vorticity. Their length
scale is small compared with the first baroclinic Rossby radius of deforma-
tion. Due to the nature of anticyclonic vorticity, its PV will be low in the
core region. Therefore, the existence of low PV water will be related to the
generation of ITE. The main idea of this paper is the formation of low PV
water via upward flux of PV through the interaction between wind stress and
oceanic frontal structure.
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Figure 4: An example of intrathermocline eddy (Adapted from McWilliams,
1985, [4]).

Figure 5: A schematic of outcropping frontal structure with a blowing down-
front wind (into the page) (Adapted from Thomas, 2008).

When we look at the PV equation expressed as flux form shown in the
paper, they are very similar to what we have derived in (33). Following
this idea and using the controlling volume used in the paper (Fig. 5), the
impermeability theorem indicates that the only way to lose PV is through
the outcropping area of the front. One source of this upward PV flux can be
seen from the term 1

g
Bωa in (33). Since it is upward, the vertical component

of ωa is projected to the vertical buoyancy shear. That is why in the paper
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the upward PV flux is defined as

JDz = −ζabsD (38)

where ζabs = 2Ω + k̂ · 5 × u and D = ∂β
∂z

(β is the air-sea flux)

The other source of the upward PV flux is the term F ×5σ in (33), which
can be seen that if the surface wind stress has a curl product associated with
horizontal density gradient. Neglect the sign and this is what we see in the
paper the upward PV flux associated with frictional forces,

JFz = 5hb× F (39)

where b = −gρ/ρ0. Applying the thermal wind relation,

5hb = f
∂ug
∂z
× k̂ (40)

where f = 2Ω and ug is the geostrophic current then (39) becomes

JFz = 5hb× F =

(
f
∂ug
∂z
· F
)
k̂ (41)

Again it shows that this flux is upward if the frictional force is in the direction
of the geostrophic shear. Summarizing, there are two components associated
with the upward PV flux out of the fluid. One is associated with the buoyancy
loss to the atmospheric forcing (eg., reducing stratification and enhancing
mixing, see (38)), and the other is related to the wind stress and the current
shear (41). The focus here is the down-front wind stress. These induce PV
destruction and therefore provide a basis for generation of ITE.

2.2 The role of winds

The other concept is that the wind-driven flow redistributes PV via wind-
driven buoyancy flux,

βwind = ME · 5hb (42)

where ME is the wind-driven Ekman transport. In his another paper ([5]),
he indicated that secondary ageostrophic circulations (ASCs) will also occur.
The mechanisms mentioned previously indicate that the down-front wind
stress translates heavier water out of the front into the ambient relatively
fresh water. Due to the upward PV flux through the outcropping area, these
translated water is inherently PV-low and are then dragged down from the
surface by ASCs. ASCs also upwell PV-high water from below to the surface
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and these water are subsequently lose PV via the upward PV flux (38, 41).
This process, while PV is extracted from the front continuously and stratifi-
cation still exists, forms a layer of low PV and becomes a signature of ITE.

The goal of this paper is to use numerical experiments to delineate this
formation process of ITE. Since PV is defined as

q = ωa · 5b (43)

Note that this definition is still the same as what we have shown in (25).
Then we decompose q into two components, one is the vertical component
qvert and the other is for horizontal one qbc.

qvert = ωak̂ · 5bk̂
= ζabsN

2 (44)

qbc = ωa(̂i, ĵ) · 5hb(̂i, ĵ)

=
∂u

∂z

∂b

∂y
− ∂v

∂z

∂b

∂x
(45)

where ∂w
∂x

and ∂w
∂y

are neglected. Using (40), we can find

qbc = −f
∣∣∣∣∂ug
∂z

∣∣∣∣2 ≤ 0 (46)

where it means that we are dealing with a geostrophic flow and the presence
of horizontal buoyancy gradient (baroclinicity) always leads to negative con-
tribution on PV.

If q ≤ 0, let ζ = k̂ · 5 × u, then

qvert + qbc ≤ 0

⇒ ζabsN
2 + f

∣∣∣∣∂ug
∂z

∣∣∣∣2 ≤ 0

⇒ (f + ζ)
N2∣∣∣∂ug

∂z

∣∣∣2 − f ≤ 0

⇒
(

1 +
ζ

f

)
N2∣∣∣∂ug

∂z

∣∣∣2 ≤ 1 (47)

This is related to Richardson number that baroclinic flow with strong current
shear results in low PV and is referred to as baroclinically low PV. The
following numerical experiment highlights this process in a three-dimensional
aspect.
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2.3 Results of numerical experiments

The simulation shows that the down-front wind stress creates a layer of low
PV, and frontal instabilities and meanders form ITEs. Their ζ is ∼ −f
so that PV is approximately zero. The length scale of ITEs are belong to
submesoscale, ∼ 6 km in radius, smaller compared to local internal Rossby
radius of 7 km. The structure of induced ITEs can be expressed well by the
model of [4].

The PV budget on the ITE isopycnal surface reveal the process we discussed
above. From his Fig. 7 - 8, they represent an idea that before the wind shut
down, the frictional forces keep extracting PV out of the front, where forms
a region of low PV water. Once the wind is turned off, the PV flux reverses
sign which indicates the front is slumping and high PV water are upwelled
and advected into the front.

The configuration of the front in the model makes it initially baroclinically
low PV. His Fig. 9 presents that the low PV is induced by the tilting effect
because of meandering and vertical motions of ASCs (provide current shear).
These effects not only reduce stratification but also favor the production of
anticyclonic vorticity for ζ ∼ −f . Therefore, the interior of ITE change from
baroclinically low PV to vortically low PV.

The paper finally examines how ITE interacts with the background flow field.
I believe the author wants to reveal an idea that the loss of PV in isopycnal
surfaces because ITEs also provide a positive eddy-induced PV flux. This
can be readily seen in his Fig. 12 and 13. The temporal evolution of positive
eddy-induced PV flux approximately match that of PV loss in the isopycnal
layer. This indicates that ITE can advects PV.

2.4 Hypothesis of the divergent mode revealed by HFR
data

Based on patterns using self-organizing map (SOM) revealed from HFR mea-
surements in 2010, we found an vortex pair or the so-called ”divergent mode”
seemed to appear during the wind relaxation period. The boundary that sep-
arates the two vortices likely located north of Icy Cape. The frequency of
occurrence of this special pattern only occupied about 5% in 45-day long
observation if twelve SOM patterns are used. The wind relaxation period is
short, approximately about 2 day, then the southwesterly wind reduced and
changed to the northeasterly wind.
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The hypothesis is to treat the radar mask being separated into a more baro-
clinic northern portion and a more barotropic southern portion (Fig. 6).
The meaning of more baroclinic means there will be more frontal structures
and stronger stratification in the northern portion. The rationale of this as-
sumption needs to be validated by hydrographic measurements.

If these fronts are surface trapped and outcropped, the wind stress provides
the frictional forces and acts with the buoyancy gradient as a PV sink via
the upward PV flux. Under this scenario, the northern part is spin-down
(ζ → −f), whereas the southern part is spin-up because the fluid gain the
input of wind curl (5 × F). When the wind subsides, the slumping front
starts to receive high PV water which are upwelled below or advected from
ambient water column. During the relaxation, the northern part turns to
spin-up, but the south becomes spin-down and consequently develop a pair
of vortices, which consist of a northern cyclone and a southern anticyclone.
Same idea should be able to explain when the winds transit from northeast-
erly to southwesterly. Since the wind-driven PV destruction does not need
the wind stress to be oriented in the down-front direction as mentioned in
the paper ([6]).

Figure 6: A cartoon representing the mechanism of divergent mode observed
in the northeastern Chukchi Sea HFR mask. The blue arrow indicates the
prevailing southwesterly wind. The latitude of 71oN is presented indicating
an imaginary boundary between the more baroclinic north and the more
barotropic south.
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