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In stratified fluids, if flow structure contains a mean field and perturba-
tion field then instability waves may be evolved by taking energy from the
mean field to the perturbed field. The basic theory is the quasi-geostrophic
(QG) model with stratification. In this document I recorded procedures of
how to deriving the boundary conditions of perturbed potential vorticity
field.

Using Vallis’ book (2006) and following his notations (p.263), the conser-
vation of potential vorticity is

∂q

∂t
+ ~u · 5q = 0 , 0 < z < H (1)

where q = Q + q′ and Q is the mean field and q′ is the perturbed field. If
the upper and lower boundaries are treated as rigid (sea surface and bottom)
then there is no vertical velocity. Therefore, the density field ρ is unchanged
along these boundaries,

∂ρ

∂t
+ ~u · 5ρ = 0 , z = 0, H (2)

If we multiply −g/ρ0 to Eq. (2) and define b = − g
ρ0
ρ then Eq. (2) becomes

∂b

∂t
+ ~u · 5b = 0 , z = 0, H (3)

Th variable b is also called buoyency, it is often seen in some theoretical
paper. Reviewing the notes for chapter 15 in Chusman Roisin’s book about
QG dynamics we can find that

∂p

∂z
= −ρg (4)
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and p = ρ0f0ψ. This is because the geostrophy is still dominant so the
pressure can be expressed as a streamfunction. Therefore, ρ = −1

g
∂p
∂z

=

−1
g
ρ0f0

∂ψ
∂z

and we can have

b = f0
∂ψ

∂z
(5)

Then Eq. (3) becomes

∂

∂t

(
∂ψ

∂z

)
+ ~u · 5

(
∂ψ

∂z

)
= 0 , z = 0, H (6)

Next, we focus on the perturbed field, which can be thought as q = Q + q′,
u = U + u′, ...etc.. We define the mean flow is along x direction and y direc-
tion is cross-stream direction so the potential vorticity in the perturbed field
is,

∂q′

∂t
+ U

∂q′

∂x
+ v′

∂Q

∂y
= 0 (7)

where

Q =
∂2ψ

∂y2
+

∂

∂z

(
f0

2

N2

∂ψ

∂z

)
+ βy (8)

q′ = 52ψ′ +
∂

∂z

(
f0

2

N2

∂ψ′

∂z

)
(9)

Similarly, the perturbed density field along boundaries is ( we do sea surface
z = H first)

∂b′

∂t
+ U

∂b′

∂x
+ v′

∂b

∂y
= 0 , z = H (10)

where express b′ as f0
∂ψ′

∂z
and so is for b,

∂

∂t

(
f0
∂ψ′

∂z

)
+ U

∂

∂x

(
f0
∂ψ′

∂z

)
+ v′

∂

∂y

(
f0
∂ψ

∂z

)
= 0 (11)

where on the third term if we do y-derivative first then we will have ∂ψ
∂y

= −U .

Therefore Eq. (11) becomes(
∂

∂t
+ U

∂

∂x

)
∂ψ′

∂z
− v′∂U

∂z
= 0 (12)

This can be seen in Johns (1988)’s eq(4) (at p.326)
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If at sloping bottom (cross-stream direction), then we expect there
will be vertical velocity advected by slope. The perturbed density field at
the bottom (z = 0) will be

∂b′

∂t
+ U

∂b′

∂x
+ v′

∂b

∂y
+ w′ ∂b

∂z
= 0 , z = 0 (13)

Note that vertical velocity is induced by w′ = v′ ∂h
∂y

and using the relation
∂b
∂z

= N2, we will get

w′ ∂b

∂z
= v′N2∂h

∂y
(14)

Eq. (13) can be written as

∂

∂t

(
f0
∂ψ′

∂z

)
+ U

∂

∂x

(
f0
∂ψ′

∂z

)
+ v′

∂

∂y

(
f0
∂ψ

∂z

)
+ v′N2∂h

∂y
= 0 (15)

Using the relation ∂ψ
∂y

= −U again and v′ = ∂ψ′

∂x
, we will have(

∂

∂t
+ U

∂

∂x

)
∂ψ′

∂z
=
∂ψ′

∂x

∂U

∂z
(1− hy?) , z = 0 (16)

where hy
? =

(
∂h
∂y
N2

f0
∂U
∂z

)
, is the ratio of bottom slope to the slope of the isopy-

cnals. This can be seen in Johns (1988)’s eq(5) (at p.326)
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