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ABSTRACT

This study investigates the applicability of the optimal interpolation (OI)method proposed byKim et al. for

estimating ocean surface currents from high-frequency radar (HFR) in the northeastern Chukchi Sea, where

HFR siting is dictated by power availability rather than optimal locations. Although the OI technique im-

proves data coverage when compared to the conventional unweighted least squares fit (UWLS) method,

biased solutions can emerge. The quality of the HFR velocity estimates derived by OI is controlled by three

factors: 1) the number of available incorporating radials (AR), 2) the ratio of the incorporating radials from

multiple contributing site locations [ratio of overlapping radial velocities (ROR) or radar geometry], and

3) the positive definiteness [condition number (CN)] of the correlation matrix. Operationally, ROR does not

require knowledge of the angle covariance matrix used to compute the geometric dilution of precision

(GDOP) in the UWLS method and can be computed before site selection to optimize coverage or after data

processing to assess data quality when applying theOImethod. The Kim et al. method is extended to examine

sensitivities to data gaps in the radial distribution and the effects on OI estimates.

1. Introduction

Ocean surface currents can be mapped over broad

areas from a shore-based high-frequency radar (HFR)

array. In real-time applications, HFRs can support

search and rescue missions, identify oil spill trajectories,

and guide adaptive sampling. Each radar receives

Doppler-shifted signals that are Bragg scattered from

surface gravity waves one-half the wavelength of the

transmitted radar wave (Crombie 1955). Because it is

induced by the current upon which the surface gravity

waves propagate, this Doppler shift is used to calculate

surface velocity. The velocity is then projected onto

a spoke pattern originating from each HFR field site,

resulting in a map of one-dimensional surface current

measurements advancing or retreating from each site.

Such quantities are referred to as the radial velocity

components r or radials, where r(x, t)5u(x, t) � x̂r. The
surface current vector u(x, t) 5 (u, y) represents the

east–west (u) and north–south (y) velocity components;

x 5 (x, y) is the corresponding coordinate system; t is the

time stepwhen r ismeasured; and x̂r is a unit vector aligned

from x to the location of the HFR. For a direction-finding

HFR, such as the SeaSonde system manufactured by

CODAROceanSensors, r aremeasured in angular sectors

divided by concentric rings originating from the HFR

(Lipa and Barrick 1983; Gurgel 1994). Multiple HFR are

required to resolve the two-dimensional u, estimated by

incorporating all r within a specified search radius (do)

surrounding x. Several methods have been designed to

resolve u from HFR measurements. Among them, the

unweighted least squares fit (UWLS) method is widely

used throughout the HFR community and is the default

method applied by SeaSonde processing software.

One quality assessment commonly usedwith theUWLS

method is the geometric dilution of precision (GDOP)

error (Chapman et al. 1997; Barrick 2006). GDOP is

computed by inverting the angle covariance matrix

and is a function of the number of measurements

available and the distance between HFR. For two

5-MHz SeaSonde systems having a range of ~180km, the

GDOP threshold excludes x̂r with intersecting angles

between r of ,158. Utilizing GDOP, optimal HFR site
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spacing is found to be ~76km. If HFR spacing is non-

optimal, then the distribution of uwill be reduced.One goal

of this paper is to evaluate u under such circumstances.

In 2010 and 2011, three 5-MHz (25-kHz bandwidth)

SeaSonde systems were deployed along the northwest-

ernAlaskan coast in the villages of Barrow,Wainwright,

and Point Lay to map surface currents during the late

July–early November ice-free season in the northeast-

ern Chukchi Sea (Fig. 1). ThisHFR array provided near-

real-time measurements of surface currents and yielded

unprecedented data coverage in this region (the radar

mask).

The Chukchi HFR sites had limitations—these were

the only locations along this coast with an electrical grid.

Thus, optimal site spacing was not possible, and the

HFR placement was dictated by power availability. The

distance between each HFR site was ~150 km, nearly

twice the optimal site spacing. Moreover, the coastline

geometry of Icy Cape and Point Franklin blocked signal

propagation. In aggregate these limitations resulted in

the radar mask being split into two regions separated by

a persistent data gap north of Icy Cape (Fig. 1).

Spurious u are often found near the boundary of the

radar mask (Fig. 1, orange circles) and are denoted by

large velocities, veer relative to neighboring u, and occur

in regions of high GDOP. Additionally, r may be noisy

due to environmental conditions or ionospheric in-

terference. Nightly reflections of the HFR signal from

the ionosphere lower the signal-to-noise ratio in radar

spectral returns at ranges of more than 90km, thus re-

ducing the effective range of each system (Teague 2001).

Figure 2 shows the average HFR data returns per hour

of day by examining the return spectra following Fang

et al. (2011). Data returns diminish for ~5h daily, typi-

cally between 0700 and 1100 UTC. Ionospheric in-

terference is persistent along high-latitude coasts and is

also encountered at lower-latitude HFR sites.

The UWLS method assumes infinite signal and unit

error variances, such that each of the r incorporated into

the estimate of u are treated identically. Thus, this ap-

proach is highly sensitive to outliers. To mitigate the

influence of noise and enhance confidence in velocity

estimates within the radar mask, we investigate the ap-

plicability of the optimal interpolation (OI) method

FIG. 1. Surface currents at 0600 UTC 20 Sep 2010 mapped by the Chukchi Sea HFR array

(red squares) using the UWLS method. Orange circles highlight current solutions with high

GDOP (red dashed contours).Gray contours indicate bathymetry at 40-m intervals. For clarity,

only subsampled vectors are shown.
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(Kim et al. 2007, 2008) to the Chukchi Sea HFR array.

Comparing OI- and UWLS-estimated u, we found that

the magnitudes of the current vectors are similar in their

spatial distributions, but in some portions of the radar

mask, the directions of the UWLS- and OI-derived vec-

tors differed noticeably from one another. We explore

the reasons for these differences.

OI has been implemented in Southern California and

the Mid-Atlantic Bight (Kim et al. 2007, 2008; Kohut

et al. 2012). Kohut et al. (2012) evaluated the OI and

UWLS methods by comparing u with in situ data. Their

results, and those of Kim et al. (2008), indicate that

OI-derived currents reduce noise and yield fewer spurious

vector solutions than those obtained from the UWLS

method. However, Kohut et al. (2012) only evaluated

specific grid points within the radar mask, which, while

showing favorable results, did not reveal potential limi-

tations of the OI method.

This study is an attempt to better quantify the limita-

tions of the OI method that, when understood, enhance

the ability to analyze HFR datasets. Using a series of

simulations designed to assess the capabilities of the OI

method, to diagnose parameter selections, and to provide

insight into how to better interpret radar-estimated u, we

find that the ratio of contributing r from each HFR site

can serve as a proxy for the estimated data quality and

can be used to optimize HFR site selection.

The paper is arranged as follows: Background in-

formation on HFR data acquisition and processing is

discussed in section 2. A brief review of the OI method

developed by Kim et al. (2007, 2008) and its im-

plementation are given in section 3. Section 4 provides

an assessment of the OI method. A discussion and sum-

mary complete the paper.

2. Ocean surface current observations in the
northeastern Chukchi Sea

The shallow (~50m) Chukchi Sea connects the Arctic

and Pacific Oceans via the Bering Strait. The shelf circu-

lation is forced by the large-scale pressure gradient be-

tween these two basins and is nominally northward and

guided by the bathymetry (Winsor and Chapman 2004;

Weingartner et al. 2005). Within the radar mask, flow typi-

cally includes the swift (~0.5–1.0ms21) Alaskan Coastal

Current (ACC), which is a coastal jet flowing northeastward

within ~40kmof the coast betweenWainwright andBarrow

(Paquette and Bourke 1974). Over the shelf south of

Hanna Shoal, flow is weaker and broader and transports

central shelf waters eastward toward Wainwright and

the head of Barrow Canyon (Fig. 1). On average, the

flow between Barrow Canyon and Hanna Shoal is very

weak. Wind-forced reversals of the ACC and shelf flow

are very common and may last for several days to weeks

(Weingartner et al. 1999, 2005).

Our SeaSonde systems collected r at 30-min intervals

over an effective depth of ~2m (Stewart and Joy 1974)

and had a resolution in range and bearing of 6 km and 58,
respectively. All spectra acquired in a 3-h window were

averaged to produce an hourly r file. Antennas were cali-

brated using a beam-pattern measurement to improve the

direction-finding capability of the receive antenna in the

local environment (Barrick and Lipa 1986). Subsequent to

acquisition, cross spectra were visually inspected to ensure

software parameters were optimized for locating Bragg

peaks at each site throughout the field season. The r were

further quality controlled by removing r . 150cms21,

x with less than 10% coverage, and velocities exceeding

three standard deviations from the temporal mean of

each x.HFR_Progs (https://cencalarchive.org/;cocmpmb/

COCMP-wiki/) was used to distribute r onto uniform

grid points (Fig. 3). If multiple contributing sites provide

at least three available r in the do, then these r are then

used to estimate u through the UWLS and OI methods

at each x. Every hour, 90min of r before and after the

cardinal hour are averaged to produce a map of u by

each method. For the UWLS method, do is defined as

12 km, whereas the do for the OI method is 35 km, with

this choice discussed in section 3. In the UWLS pro-

cedure, choosing a do too large results in r far from the

grid point of interest having a large influence on the

estimated u. In theOImethod r areweightedwith respect

to their distance from the grid point of the resulting u and

thus utilize a larger do. Theseweighting schemes are a key

difference between the two methods.

FIG. 2. Average number of 2010 HFR data returns per hour of

day for Barrow (blue), Wainwright (red), and Point Lay (black).

Shaded area indicates the period of ionospheric interference.

Similar results were found for 2011.
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HFR data from 2010 (September–October) and 2011

(August–October) are used in this paper with the main

analysis based on the former. The 2011 data are used to

compute related parameters of the OI method for

comparison purposes.

3. Optimal interpolation

a. Objective analysis

ForHFRdata, u and r have the following relationship:

r5gTu1n , (1)

where g is the angle matrix (g(x)5 [cosu sinu], with u as

the bearing at xmeasured counterclockwise from east),

and n is the error matrix. In the UWLS method,

(gTg)21 is the inverse of the angle covariance matrix,

where superscripts ‘‘T’’ and ‘‘21’’ denote the matrix

transpose and inverse, respectively. The norm of

(gTg)21 (calculated within the HFR_Progs toolbox) is

the GDOP. Based on the Gauss–Markov theorem,

unknown u with a minimum variance from observation

r can be written as

u5covTdm cov21
dd r , (2)

where covdm is the covariance matrix between the u and

r, and covdd represents the covariance matrix among r.

Assuming that r and n and u and n are uncorrelated

implies that

(covdm)ik 5 hriuT
k i , (3)

(covdd)ij 5 hrirTj i1 hnin
T
j i , (4)

where i and j represent the different grid points of r,

k indicates the grid point of u, hnin
T
j i denotes the error

covariance matrix, and h�i is the expected value opera-

tor. The error covariance matrix is assumed to be

hnin
T
j i5s2

r I , (5)

where I is the identitymatrix, ands2
r is the noise variance

of r. From (1), (3), and (4), the covariance matrix can be

written as

(covdm)ik 5gT
i huiuTk i (6)

(covdd)ij 5gT
i huiuTj igj1s2

r I . (7)

Kim et al. (2007) express the covariance matrix for u

in terms of the correlation and variance:

huiuTk i5s2
s (xk)Ir(Dxik) (8)

huiuTj i5s2
s (xk)Ir(Dxij) , (9)

where s2
s (xk) is the signal variance of u at the grid points

xk, r(Dxik) is the spatial correlation function between xi
(the grid points of ri) and xk (the grid points of uk), andD
is the distance between these grid points. Note that (9) is

similar to (8) and that (9) is the spatial correlation

function for grid points of r at xi and xj. Kim et al. (2008)

define the spatial correlation function to be

r(Dx)5 exp

2
642

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Dx

lx

�2

1

 
Dy

ly

!2
vuut

3
75 , (10)

where lx and ly are the decorrelation length scales in the

x and y directions, respectively. These length scales are

discussed in the following section.

b. Setting the parameters of OI

1) SIGNAL AND ERROR VARIANCES

The covariancematrices require a priori knowledge of

s2
s and s2

r . Following Kim et al. (2008) and Kohut et al.

(2012), we determine these parameters by calculating

standard deviations of themeasured r. For themeasured

r fromBarrow,Wainwright, and Point LayHFR in 2010,

the standard deviations are 21.68, 17.87, and 6.39 cm s21,

respectively, with an average value of ~15 cm s21. We

doubled the standard deviation to ensure it was not

underestimated, resulting in s2
s equal to 900 cm2 s22. An

FIG. 3. Grid points of radial velocities measured by the HFR in

Barrow (red), Wainwright (green), and Point Lay (blue) during the

2010 operating season. Black dots indicate grid points that were

removed from the dataset during the initial QA/QC process.
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examination of other assumed s2
s values (e.g., 200, 500,

1500 cm2 s22) indicated that the OI results were largely

insensitive to our choices.

The error variance (s2
r ) is attributed to measurement

uncertainties. Liu et al. (2010) found the root-mean-

square (RMS) difference ranged from 6 to 10 cm s21 for

hourly r for 5-MHz SeaSonde systems. Lipa (2003)

found that the RMS difference converged to 10 cm s21,

although that estimate was based on 25-MHz systems.

We chose an RMS difference of 10 cm s21 as a reason-

able estimate of the measurement uncertainties for our

sites and set s2
r to 100 cm2 s22 in (5). This estimate is

3 times larger than that of Kim et al. (2008), who usedOI

on 25-MHz systems. The larger error variance leads to

smoother estimates, suppresses noise, and is chosen as

reasonable in our study domain.

2) DECORRELATION LENGTH SCALE AND SEARCH

RADIUS

Kim et al. (2008) recommend the decorrelation length

scale be within a factor of 4 of the spatial resolution of u.

Following Kim et al. (2007), we find the range of lx to be

21–71 km in 2010 and 18–42km in 2011, while the ranges

for ly are 10–15 and 9–11km. When compared with ly,

the larger values of lx are due to the ACC. The differ-

ences between the years could be due to differences in

the temporal span (2011 had a longer dataset) and/or

because the ACC was more coherent in 2011 than in

2010 (Weingartner et al. 2013). The spatial correlation

structure was examined across the ACC near Wain-

wright by decomposing the radar-estimated u (by the

UWLS method) into alongshore (568T) and cross-shore

(3268T) velocity components for a 100-km-long transect.

Results indicate that the e-folding scale of the cross-

shore velocity component is larger than the alongshore

scale, so the larger lx found here is expected.

The values of lx or ly should not be so large as to

include r far from the u grid point because a value that

is too large may oversmooth and blur small-scale var-

iations. Kim et al. (2008) suggested that the calculated

decorrelation length scale from the HFR data should

be treated as an upper bound. Kohut et al. (2012)

showed that the OI estimates were insensitive to changes

in the decorrelation length scales. In this analysis lx and

ly were defined as 12km (twice the spatial resolution)

and the same as do used in the UWLS method (Fig. 1).

We will show that this choice still captures the general

circulation pattern of surface currents as detected by

the UWLS method. The do in OI sets the smallest

spatial weighting far from x and is defined as do 5
35 km. Hence, for OI, the spatial correlation weight

function decreases to 0.24 at 12 km and to 0.05 at

35 km.

c. Implementing OI

The OI algorithm (provided by Dr. Sung Yong Kim)

works in conjunction with the HFR_Progs toolbox. The

first step of the algorithm loads r and its corresponding

bearing. These bearings comprise the angle matrix g and

the given s2
s and s2

r variances are constructed as given by

(7)–(9). Then the distance (Dxij) between the grid points of
rij, the distance (Dxik) between the grid points of different

ri, and the grid point (xk) of the estimated uk are calcu-

lated and used in (8) and (9) to compute the local spatial

correlation function. Afterward, the data-model and data–

data covariance matrices, (6) and (7), are computed. Fi-

nally, the OI-estimated u is retrieved from (2).

d. An example of OI-estimated surface currents and
their relationship with GDOP

Before introducing the OI-estimated u, we present

a map of u estimated by the UWLS method using

35 km for do (Fig. 4; chosen at the same hour as in

Fig. 1). Although the data gap north of Icy Cape is

filled, vector magnitudes in this region are amplified,

and the GDOP value is high (~3). This amplification is

a typical example of GDOP instability. Vectors are

also magnified along the edge of the radar mask due to

the equal weighting of r. Treating r measured 35 and

5 km away from the grid for u with the same weight is

likely unreasonable.

For the same dataset, an example of OI-estimated u is

shown in Fig. 5. The OI-estimated u fill the gap north of

Icy Cape and capture nearly identical features as that in

FIG. 4. As in Fig. 1, but using a 35-km search radius. Red dashed

contours show corresponding GDOP. For clarity, only subsampled

vectors are shown.
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Fig. 1. For example, the eddylike current field northwest

of Point Lay is very similar in both methods. However,

the amplified vectors seen in Figs. 1 and 4 are not present

in the OI estimates of Fig. 5. This is especially true along

the boundary of the radar mask because the OI method

tapers the solutions toward zero when the number of r at

a given xk is insufficient to estimate uk (Kim et al. 2008).

Although located in a region of high GDOP, these

vectors are not amplified. This suggests that GDOPmay

not be applicable to the OI method. Instead, we com-

pute the condition number (CN) of covTdm cov21
dd (see

section 4), which is a measure of the sensitivity of the

inverse of a matrix and reflects how much variation will

be brought to u from small variations in r. In Fig. 5, the

radar mask is split into two relatively low CN zones

(,2), with high CN zones (.2) found north of Icy Cape

and in the outer edges of the radar mask. In aggregate

the locations of the tapered vectors within the spatial

structure of CN suggest that CN is the OI analog to

GDOP used in the UWLS method. Note that the com-

puted CN results from the matrix containing both angles

and the correlation function, whereas GDOP is solely

from the angle matrix. We will show later that CN is one

of the controlling factors for OI estimate quality.

Nevertheless, there are notable differences between

the two methods. For example, all surface currents are

southwestward in the UWLS estimate north of 728N,

whereas sheared flows are evident in the OI estimate. If

the OI method is used to process HFR data, then it is

worth determining if such features are reliable. Kim et al.

(2008) illustrated the uncertainties of the OI estimates in

terms of error ellipses. However, we will show that large

and small error ellipses may appear in the same location,

thus making interpretation difficult. To examine the

source of such discrepancies, we investigate the limitation

of (2) using a series of test simulations in section 4.

4. Error analysis

a. Unidirectional flow field

1) UNIFORMLY EASTWARD CURRENT

The first test scenario considers a simple flow field of

spatially uniform, time-invariant eastward currents of

u 5 10 cm s21 and y 5 0 cm s21. This flow field is con-

verted to r based on (1) for each of the radial velocity

grid points (Fig. 3). The resulting r are then used to

estimate u via the UWLS method (with do set to 35 km

for comparison) and the OI method described in sec-

tion 3. Results, shown in Fig. 6a, indicate that the

OI-resolved u are well determined over most of the radar

mask; however, veered vectors, with reducedmagnitudes,

are found along the boundary of the radar mask and

along the baselines between radar sites. The UWLS-

resolved u are all well determined and unbiased. In other

words, in particular regions the OI method produces

currents containing north–south velocity components

even though the flow is purely eastward. North of the

Barrow HFR site [~728N, ~1578W (region B)], there is

a region where the OI-estimated u are very weak

(Figs. 6b,c). This region is unique because just west of it,

theOI-estimatedu are very nearly eastward.We examine

this region in more detail in the following section.

2) UNIFORMLY NORTHWARD CURRENT

In this second scenario, the input flow field has con-

stant and spatially uniform northward currents (u 5
0 cm s21 and y 5 10 cm s21). Following the same pro-

cedure as before, the OI-resolved u are shown in

Fig. 7a. Again, the resulting u by the OI method are all

reasonable near the center of the radar mask. However,

near the boundary of the radar mask and along the

radar baselines, the OI method tends to generate east–

west velocity components. In contrast, Fig. 6c, which

contained very weak u for the constant east–west flow

case, now has a good estimate (Fig. 7c). Region B is

representative of similar regions within the radar mask.

Its main characteristic is that it is near the boundary of

the radar mask, outside of the limit of r coverage by the

Wainwright radar; however, u are derived in this region

due to the large do. Note that the UWLS method

FIG. 5. Surface currents at 0600 UTC 20 Sep 2010 mapped by the

Chukchi Sea HFR array (red squares) calculated using the OI

method. Red dashed contours show GDOP computed using the

UWLSmethodwith a 35-km search radius. Black contours indicate

the CN of covTdm cov21
dd (see text). For clarity, only subsampled

vectors are shown.
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provides perfect estimates, even in regions of high

GDOP. This suggests UWLS is an unbiased estimator

in this modeled flow, where n 5 0. However, the esti-

mated u in region B from the two modeled flows show

distinctly different results, indicating OI is a biased

estimator due to weighting of r in do.

In region B, themajority of the incorporated r are from

the Barrow HFR and are oriented in an approximately

north–south direction. For eastward currents, r cannot be

properly resolved because u � x̂r ; 0. Although there are

those that can be resolved within do, they are far away

from the grid point of the estimated u. Therefore, these

r have small weight with the result being a biased estimate

of u. Conversely, for northward currents, r can be prop-

erly resolved in the OI do and produce a valid result. This

suggests that in the case of OI, if the majority of the in-

corporated r are from a single HFR site, then significant

bias errors will be found in estimated u.

Similar experiments were conducted using (u, y) 5
(10, 10), (u, y)5 (8, 6), (u, y)5 (28, 6), (u, y)5 (1, 10), and

(u, y) 5 (10, 1). The results show similar patterns of large

bias errors in regionswhere r is poorly resolved.Therefore, if

one interprets the OI estimates by mapping the un-

certainty ellipses, then large and small ellipses may

appear in the same location. Such discrepancies are an

outcome of applying unidirectional flow fields where r

may be only partially resolved. Generalizing, we next

apply a varying flow field to study the source of un-

certainties in the OI method.

b. Multidirectional flow field

1) DOUBLE-GYRE SYSTEM

Wenext examine a temporally and spatially varying flow

field motivated by Shadden et al. (2005). This flow consists

of a double-gyre system similar to the observed surface

current patterns (Figs. 1, 5). We also incorporate a low-

frequency time variation such that the flow field involves

the two gyres propagating southward at ~0.3ms21 across

the northeastern Chukchi Sea. The streamfunction for this

test flow field is

c(x, y, t)5A sin(Kpf ) sin[Kp(y2 711 0:02t)/4]

1 3A sin(1024pxy1 t) , (11)

FIG. 6. (a) Example of the OI-estimated (blue) and UWLS-estimated (black) surface currents derived from

modeled uniformly eastward currents. OI and UWLS vectors are overlapped. For clarity, only subsampled vectors

are shown. Red squares represent locations of HFR. Red rectangle highlights region B. (b) Enlargement of region B.

(c) Enlargement to show the detail of the red rectangle area in (b).
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where

f (x, t)5 a[(x1 169)/6:5)]21 b[(x1 169)/6:5] and (12)

a(t)5E sin(vt) and b(t)5 12 2E sin(vt) . (13)

Parameters are t (an arbitrary integer), E 5 0.55,

v5 2p/20,K5 1 (scale factor), andA5 50. The velocity

field um 5 (um, ym) is then given by

um(x, y, t)52
›c

›y
and ym(x, y, t)5

›c

›x
. (14)

Here um and ym are computed for every grid point of r

by (1) and then converted to their radial velocity com-

ponents (rm). Note in the following analysis that these

grid points mimic the coverage of the 2010 HFR ob-

servations and that the flagged locations indicated by the

gaps in Fig. 3 have no data. The entire simulated velocity

field lasts for 205 hourly time steps or ~8 days of HFR

measurements. The rm are used to estimate u using theOI

method. We note that the estimated u are computed for

an ideal situation insofar as the grid points of rm for each

of the three HFR have continuous data for the 205-h

span, except for the flagged grid points. When modeled

andOI-derivedu are plotted together, disparities become

evident (Fig. 8). In the regions farthest offshore, north of

Icy Cape and in the HFR baselines, the resultant u differ

in direction and magnitude. To examine the possibility

that theOImethodmay oversmooth small-scale features,

we also modeled a flow field having small-scale spatial

variations by setting K 5 3 in (11) (Fig. 8d). This small-

scale flow field contains eddies of ~30-km radius in

comparison to the test eddies with ~120-km radius. The

results indicate that spatial variations on this scale are still

captured by the OI technique.

2) STATISTICAL METRICS

The performance, or skill, of theOImethod is based on

quantitative agreement between the modeled (um) and

resulting currents (u). Utilizing the test field described by

(11)–(14) and following Willmott (1981), Warner et al.

(2005), and Liu et al. (2010), the skill [on a (0–1) scale] is

Skill5
1

2
(SU1 SV), (15)

FIG. 7. (a) Example of the OI-estimated (blue) and UWLS-estimated (black) surface currents derived from

modeled uniformly northward currents. OI and UWLS vectors are overlapped. For clarity, only subsampled vectors

are shown. Red squares represent locations of HFR. Red rectangle highlights region B. (b) Enlargement of region B.

(c) Enlargement to show the detail of the red rectangle area in (b).
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where

SU5 12

�
205

t51

jut,m 2 ut,oj2

�
205

t51

(jut,m 2 ut,oj1 jut,o 2ut,oj)2
and (16)

SV5 12

�
205

t51

jyt,m 2 yt,oj2

�
205

t51

(jyt,m 2 yt,oj1 jyt,o 2 yt,oj)2
. (17)

Subscripts m and o represent the modeled and the OI-

estimated flow, respectively, and the overbar indicates

an average of the 205 time steps. SU and SV represent

the agreement between the known field and the OI

estimate for the two velocity components. A skill 5 1

indicates perfect agreement, and a skill5 0 indicates no

agreement.

We also compute the complex correlation function for

the two vector fields and the phase angle following

(Kundu 1976; Shay et al. 2007)

f5 tan21
�
205

t51

(ut,oyt,m 2 yt,out,m)

�
205

t51

(ut,out,m1 yt,oyt,m)

, (18)

where f is the average angular difference between the

estimated vector and themodeled vector. A positivef is

the average cyclonic rotation of the modeled current

with respect to the estimated current, and a negativef is

the average anticyclonic rotation.

FIG. 8. (a)–(c) Modeled flow field based on (11)–(14) at three time steps. (d) An example of small-scale modeled

flow field by changing the scale factor K from 1 to 3 in (11). Blue and black vectors are OI estimated and original

modeled currents, respectively. OI and model vectors are overlapped. For clarity, only subsampled vectors are

shown. Red squares represent locations of HFR.
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3) PERFORMANCE OF OI

The spatial distribution of the skill of the OI estimates

(Fig. 9) shows areas of high confidence (skill$ 0.7). We

chose a skill $ 0.7 as being reliable because the associ-

ated phase shifts, as discussed below, are also small. Of

interest is that the skill in the gap north of Icy Cape is

quite low (,0.4), suggesting that such areas cannot be

reliably estimated by OI. Low-skill regions also cir-

cumscribe the high-skill interior. A majority of the low-

skill regions coincide with the flagged grid points during

the quality assurance/quality control (QA/QC) process

(Fig. 3). This implies that these regions are incorporating

relatively few r and/or that the rmostly originate from the

same HFR site and thus yield large biases.

In the interior of the radar mask where the skill$ 0.7,

phase shifts (Fig. 10) are quite small, ~28 (the difference
in magnitude between the modeled and estimated vec-

tors is ,0.1%). However, phase shifts as large as 208
(accompanied by a reduction of ~6% in vector magni-

tude) occur along the baselines and the boundary of the

radar mask. This result explains the weak currents and

shear found in OI-estimated currents (Fig. 5). In sum-

mary, OI appears to be a robust estimator for a variable

flow field in the interior of the radar mask although it is

limited along the radar mask baselines and boundary.

4) FACTORS CONTROLLING OI PERFORMANCE

The number of available incorporating r (AR), within

a 3-h averaging period, from all HFR in do is examined

for every grid point of u (Fig. 11). The largest AR values

are found near the HFR in Wainwright and Point Lay,

and the lower AR values occur farther offshore from

theseHFR.When comparing Fig. 11 with Fig. 9, the area

with high skill ($0.7) does not match that with high AR.

If AR is the dominant factor influencing the skill of OI

estimates, then Fig. 9 should have a distribution similar

to the high AR distribution; however, higher AR

values are found nearshore and decrease as one

moves offshore—unlike skill, which remains high even

in offshore regions, indicating that AR alone is not the

sole factor influencing OI estimates.

FIG. 9. Spatial distribution of skill (color shaded) ofOI estimates.

Small black dots indicate locations of quality flagged radial velocity

measurements. Black contour denotes the 0.7 skill level. Red

squares are the locations of HFR.

FIG. 10. Spatial distribution of phase shift (color shaded and in

degrees) of OI estimates. Positive values mean counterclockwise

rotation of the modeled current with respect to the OI-estimated

current. Small black dots indicate locations of quality flagged radial

velocity measurements. Red squares are the locations of HFR.

FIG. 11. Spatial distribution ofAR (color shaded) for eachOI grid

point. Small black dots indicate locations of quality flagged radial

velocity measurements. Red squares are the locations of HFR.
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In this regard, the number of r from each individual

HFR plays an important role. We define the ratio of

overlapping radial velocities (ROR) as

RORd
o
5

NR1

NR2

, (19)

where NRi, i 5 1, 2 is the number of available in-

corporating r in do from each radar, with i 5 1 and 2

being the primary and secondary r contributors, re-

spectively. For example, for a 3-h averaging period for

do at x, there are 60 r fromWainwright, 20 from Barrow,

and 15 from Point Lay, thenRORat x is 60/205 3. ROR

is related to geometric radial coverage and, ideally, it

should be close to 1. An ROR much greater than one

means the incorporating r are primarily from one radar

site. ROR is useful in ascertaining potential bias errors,

which can be represented by the contribution of avail-

able incorporating r in do. For cases where i . 2, we

argue that the role of the ith HFR is insignificant here,

but it can be beneficial to condition covTdm cov21
dd as

discussed below.

The spatial distribution of ROR at each grid point is

shown in Fig. 12. Two regions with relatively low ROR

(,4) are encircled by areas with high ROR (.7), similar

to the spatial distribution of skill (i.e., regions with high

ROR correspond with locations of low-skill OI esti-

mates). This suggests that ROR is more important than

AR in the OI method and that it helps to explain the

discrepancies in the unidirectional flow cases. ROR is

high in regions where r is predominantly from a single

radar site and high bias errors are found. Consequently,

near the observation gap north of Icy Cape, where AR

has a modest value (~400), the skill is low and does not

necessarily correspond to the AR score. Regions with

lowROR tend to be properly resolved with reduced bias

errors, suggesting ROR is a better proxy than AR for

interpreting data quality.

It is interesting to examine the response of OI esti-

mates in areas with low AR and low ROR. Although

low ROR appears to provide a better index of data

quality, the fundamental basis of OI is the correlation

function (10). If the correlation function fails to describe

the relationship between r in circumstances when AR

and ROR are low, then the correlation function will be

poorly represented in (8) and (9). Since this function is

used in forming the linear estimates of u based on r by

(2), we need to understand the sensitivity of the OI

method to the correlation structure, which depends

upon AR and ROR.

OI is a linear estimationmethod, inwhich covTdm cov21
dd

is the mathematical operator that estimates u from r. In

objective analysis, covTdm cov21
dd represents the correla-

tion matrix in which the positive definiteness is described

by fitting an analytical correlation function (10). If the

current field is difficult to describe analytically, then

correlation estimates that do not yield positive definite

matrices will be sensitive to small variations in the

analysis parameters and can result in erratic estimates

(Carter and Robinson 1987). This sensitivity can be

measured by computing the CN of the correlation ma-

trix, indicating how much the error is magnified upon

converting r to u (Arfken et al. 2005). Even small vari-

ations in r may lead to large changes in u if CN is large.

Recall that CN results from the matrix containing both

angles and the correlation function, whereas GDOP is

solely from the angle matrix. Hence, as mentioned in

section 3, we suggest that CN is the OI analog to GDOP,

preferred in the UWLS method.

We computed the CN of covTdm cov21
dd and plotted its

spatial distribution at each grid point for which there is

a corresponding OI estimate (Fig. 13). Grid points with

relatively high CN (.5) encircle the outer edge of the

radar mask and those with low CN (,2) (centered

around 70.58N, 1648W and 71.58N, 1608W) are similar to

the spatial distribution of skill (.0.7) and phase shift

(,28) (Figs. 9, 10). A comparison of the CN map with

the ROR pattern indicates that high CN areas match

areas with high ROR. When we encounter regions of

low CN that coincide with high ROR, the skill may be

low, indicating that while covTdm cov21
dd may be well

conditioned, the estimator is dependent on the contri-

bution of the incorporating r.

The spatial patterns of AR, ROR, and CN suggest

a relationship among these factors. The correlation be-

tween ROR versus AR is 20.01 and not significantly

FIG. 12. Spatial distribution of ROR (color shaded) for each OI

grid point. Small blackdots indicate locations of quality flagged radial

velocity measurements. Red squares are the locations of HFR.
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different from 0. However, the correlation between CN

and AR is20.39 and that between CN and ROR is 0.58,

with both results significant at the 95% level (Fig. 14).

Therefore, CN is a function of both AR and ROR. In

most HFR operations, data gaps are unavoidable and, as

gaps occur, the AR and ROR patterns will change,

modifying the structure of the correlation matrix and

affecting current estimates. Our analysis shows that AR,

ROR, and CN interact with each other during data

processing and affect the accuracy of OI estimates.

AR is based on the HFR data, while CN is based on

the correlation matrix. However, prior to HFR setup

and operation, these two factors are unknown. ROR is

a result of the radar geometry due to HFR siting, which

can be examined beforehand. Once do is decided, the

ROR pattern can be determined for the OI-estimated

currents. This may be crucial for site planning or short-

term deployments of HFR (Barrick et al. 2012). Thus,

we suggest that ROR serve as a planning tool in as-

sessing potential errors in OI.

5) SENSITIVITIES TO RANDOM GAPS

The previous analysis is based on noise- and gap-free

conditions, which is not realistic in most HFR opera-

tions. Kim et al. (2008) show that the OI method can

effectively smooth noise and provide more precise so-

lutions than the UWLSmethod, true for Gauss–Markov

estimators (Wunsch 2006). Kim et al. (2008) did not

examine the sensitivity of OI to data with temporal gaps.

We consider a simple condition in which the signal-to-

noise ratio of the returned radar signal is below 6dB (the

default threshold in SeaSonde processing software). In this

case, the spectra will be flagged as an outlier and produce

a gap in r. The following effort seeks to understand the

consequences of observation gaps on the quality of OI

estimates.

We apply the Monte Carlo method on nine selected

grid points (Fig. 15) chosen to represent areas in the

interior (IS, IN), edge (ESW, ENW, ENE1, ENE2, EN),

and central (C1, C2) portions of the radar mask. To

derive statistically independent comparisons, the do for

each of the chosen grid points do not overlap. Using the

double-gyre flow field, 10%–90% of the grid points in do
are randomly assigned as gaps for all time steps. Note

that the remaining r are still noise free. We then form

skill estimates following (15)–(17), with this procedure

repeated 100 times to form 95% confidence intervals on

the estimated mean. The presence of gaps also means

that the structure of covTdm cov21
dd may be changed, so we

compute the CN after each iteration.

Variation in the skill of OI estimates and the CN of

covTdm cov21
dd are shown in Fig. 16. The interior grid

points (IS, IN) are very resilient to gaps, even when only

10% of the data occurs in the do. This result further

underscores the importance of high AR and low ROR,

for it enables u in regions with densely overlapping r to

be well resolved. It also suggests that velocity estimates

can be properly resolved based on a priori statistics even

though theremay bemany data gaps in such regions. For

grid points initially having low skill in the gap-free

simulations (e.g., ESW, C2, ENE1, ENE2, and EN),

adding gaps further erodes the skill. When gaps of 60%

or more occur in do, the skill values are all below 0.2 in

FIG. 13. Spatial distribution of CN (color shaded) of

covTdm cov21
dd at each grid point of the OI estimates. Small black

dots indicate locations of quality flagged radial velocity measure-

ments. Red squares are the locations of HFR.

FIG. 14. Scatterplots of (top) CN vs AR, (middle) ROR vs AR,

and (bottom) CN vsROR for the double-gyre system (see Figs. 11–

13). Corresponding correlation coefficient is shown in red, and

number in parenthesis refers to the 95% significant level. Note the

x and y axes have different scales.
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areas with low AR and high ROR. Therefore, increasing

the number of gaps in these regions implies that the

available r tends to originate from the same HFR site and

results in bias. For example for ENW, the skill drops sub-

stantially as the number of gaps increases. Consequently, in

cases where there are random gaps, high AR and low

ROR are required for reliable OI estimates. This result

also highlights that site spacing of the HFR array plays

an important role in estimating surface currents using

the OI method. If the spacing between HFR sites is not

optimal, then better data coverage can be improved

using the OI method, but in certain regions it may in-

troduce significant bias errors into the resulting current

estimates.

5. Discussion and summary

Wehave assessed the performance of theOImethod on

an HFR dataset from the Chukchi Sea with site spacing

farther than optimal. The focus of the study was on the

feasibility of OI under these circumstances and to in-

vestigate the applicability of the OI method. Our results

offer suggestions and a simple tool to diagnose the per-

formance of the OI method for the broader HFR com-

munity. Three factors influence the OI-derived data

quality: 1) the number of available incorporating r (AR)

for calculating u; 2) the ratio of the incorporating r from

overlapping HFR sites used in calculating u (ROR or ra-

dar geometry); and 3) the positive definiteness [condition

number (CN)] of the correlationmatrix can be regarded as

the equivalent to GDOP for UWLS. For operational

purposes, the potential performance of theOImethod can

FIG. 15. Gray circles are grid points for OI estimates. Red dots,

enlarged for clarity, indicate locations of grid points for the gap

sensitivity experiment. Red squares are the locations of HFR.

FIG. 16. Variation in OI estimate skill (solid lines) and the condition number of covTdm cov21
dd

(dashed lines) for varying gap percentages in the search radius. Vertical bars indicate the 95%

confidence interval. Note that the skill lines for C1 and ESW are overlapped.
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be evaluated by examining ROR patterns and it may be

of value in choosing HFR sites. Our idealized experi-

ments show that the OI method is a robust technique in

dealing with flow variability and that it provides current

estimates with smaller variance than the conventional

UWLS method. Regions within the radar mask with

high AR and low ROR u can be reliably constructed

with the OI method even though there may be gaps in

the radial data. However, careful attention needs to be

paid if theAR is limited because this may result in a high

CN and an ill-conditioned correlation matrix, which will

amplify errors. If the incorporating r are mainly con-

tributed by a single radar site (high ROR), significant

bias errors can arise.

This study does not take into account the influence of

random noise, which can be widespread and sporadic,

although one common situation considered here is the

diurnal interference of the ionosphere. Since this in-

terference is widespread, we have conducted Monte

Carlo experiments by adding random noise with varying

magnitude on each r in do. The result (not shown) in-

dicates that the skill of the OI estimates drops as the

magnitude of noise increases. A similar pattern is found

if u are estimated through the UWLS method. There-

fore, if the noise source is widespread and comparable

to the signal strength, then both the UWLS and OI

methods lose the ability to make accurate estimates.

The main departure of the OImethod from the UWLS

method is the use of larger do and weighted radials to

produce smoother currents and greater data coverage in

the resultant current map. We find the major source of

erroneous estimates using the OI method depends on

ROR, which is a direct function of HFR siting. Before

applying the OI method to HFR data, we recommend an

analytical flow field (such as that described in section 4)

with multidirectional patterns to create a map of esti-

mated skill, as this will assist in identifying regions of

possible erroneous estimates. Conveniently, ROR can be

computed before site installation to highlight locations of

substantial bias errors. ROR can also be computed in

real-time data processing, to provide a tracking criterion

for how bias errorsmay be introduced into theOI surface

current estimates.
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